Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.10.22277465

ABSTRACT

Fast surveillance strategies are needed to control the spread of new emerging SARS-CoV-2 variants and gain time for evaluation of their pathological potential. This was essential for the Omicron variant (B.1.1.529) that replaced the Delta variant (B.1.617.2) and is currently the dominant SARS-CoV-2 variant circulating worldwide. RT-qPCR strategies complement whole genome sequencing, especially in resource lean countries, but mutations in the targeting primer and probe sequences of new emerging variants can lead to a failure of the existing RT-qPCRs. Here, we introduced an RT-qPCR platform for detecting the Delta- and the Omicron variant simultaneously using a degenerate probe targeting the key {Delta}H69/V70 mutation in the spike protein. By inclusion of the L452R mutation into the RT-qPCR platform, we could detect not only the Delta and the Omicron variants, but also the Omicron sub-lineages BA.1, BA.2 and BA.4/BA.5. The RT-qPCR platform was validated in small- and large-scale. It can easily be incorporated for continued monitoring of Omicron sub-lineages, and offers a fast adaption strategy of existing RT-qPCRs to detect new emerging SARS-CoV-2 variants using degenerate probes.

2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.19.22271112

ABSTRACT

The newly found Omicron SARS-CoV-2 variant of concern has rapidly spread worldwide. Omicron carries numerous mutations in key regions and is associated with increased transmissibility and immune escape. The variant has recently been divided into four subvariants with substantial genomic differences, in particular between Omicron BA.1 and BA.2. With the surge of Omicron subvariants BA.1 and BA.2, a large number of reinfections from earlier cases has been observed, raising the question of whether BA.2 specifically can escape the natural immunity acquired shortly after a BA.1 infection. To investigate this, we selected a subset of samples from more than 1,8 million cases of infections in the period from November 22, 2021, until February 11, 2022. Here, individuals with two positive samples, more than 20 and less than 60 days apart, were selected. From a total of 187 reinfection cases, we identified 47 instances of BA.2 reinfections shortly after a BA.1 infection, mostly in young unvaccinated individuals with mild disease not resulting in hospitalization or death. In conclusion, we provide evidence that Omicron BA.2 reinfections do occur shortly after BA.1 infections but are rare.


Subject(s)
Death
SELECTION OF CITATIONS
SEARCH DETAIL